# OSV

Dor Laor, Avi Kivity Cloudius Systems



Glauber Costa KVM, Containers, Xen

Nadav Har'EL, **Nested KVM** 



Pekka Enberg, kvm, jvm, slab





Avi Kivity KVM originator

Dor Laor, Former kvm project mngr

Or Cohen **Dmitry Fleytman Ronen Narkis** Guy Zana hch











# The story so far

In the beginning there was hardware ... and then they added an application ... and then they added an operating system ... and then they added a hypervisor ... and then they added managed runtime Notice the pattern?

#### **Typical Cloud Stack**

**Your App** 

**Application Server** 

**JVM** 

**Operating System** 

**Hypervisor** 

**Hardware** 

# Our software stack Congealed into existence.

#### **A Historical Anomaly**

**Your App** 

**Application Server** 

**JVM** 

provides protection and abstraction

**Operating System** 

provides protection and abstraction

**Hypervisor** 

provides protection and abstraction

**Hardware** 

#### Too Many Layers, Too Little Value

**VMM** OS **Property/Component** runtin Hardware abstraction **Isolation** Resource virtualization Backward compatibility **Security** Memory management I/O stack Configuration



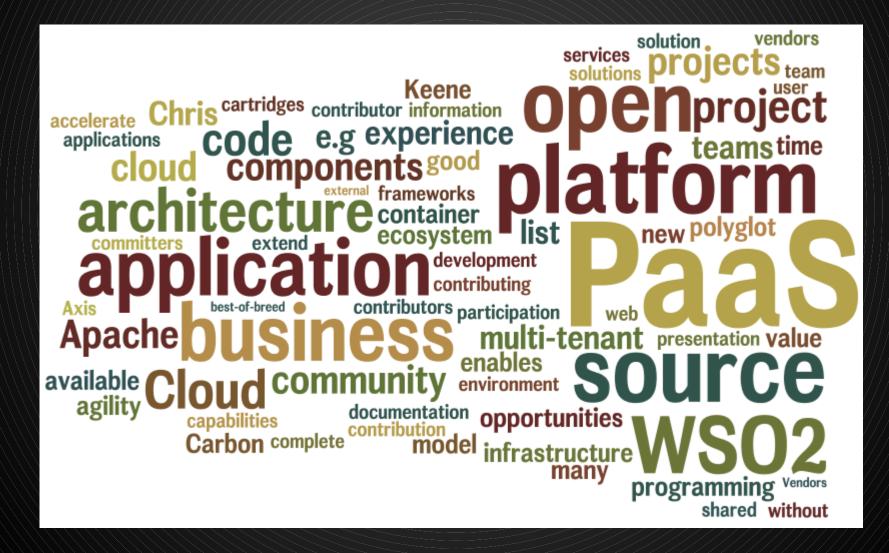
#### Virtualization

Virtualization 1.0

Virtualization 2.0

Virtualization 2.0, Massive Scale




Transformed the enterprise from physical2virtual



virtual server



# Virtualization 2.0, Dev/Ops



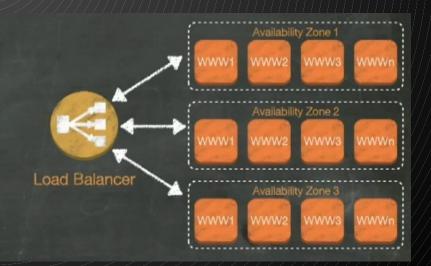
#### Virtualization 2.0, agility!

#### Deployments at Amazon.com

11.6

Seconds mean time between deployments (weekday) 1,079

Max number of deployments in a single hour


10,000

Mean number of hosts simultaneously receiving a deployment 30,000

Max number of hosts simultaneously receiving a deployment

Rolling upgrade within seconds and a fall back option





#### Virtualization 2.0

#### **Architecture**

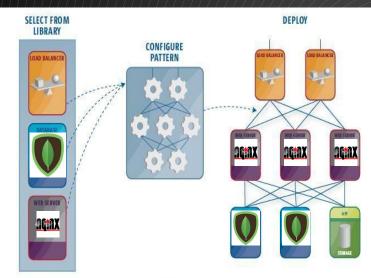



Figure 1. Example cloud-based deployment of an application onto a two-tier Web server architectural pattern.

#### vServer OS 1.0

- No Hardware
- No Users
- No app(S)

Yes Complexity



# less is more.

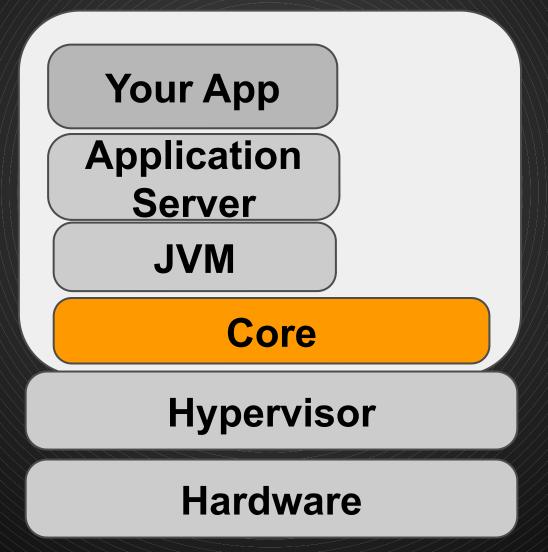
#### **Mission statement**

# Be the best OS powering virtual machines in the cloud












#### The new Cloud Stack - OS<sup>v</sup>

Single Process

Kernel space only



Linked to existing JVMs

App sees no change

#### The new Cloud Stack - OS<sup>v</sup>

Memory

Huge pages, Heap vs Sys

1/0

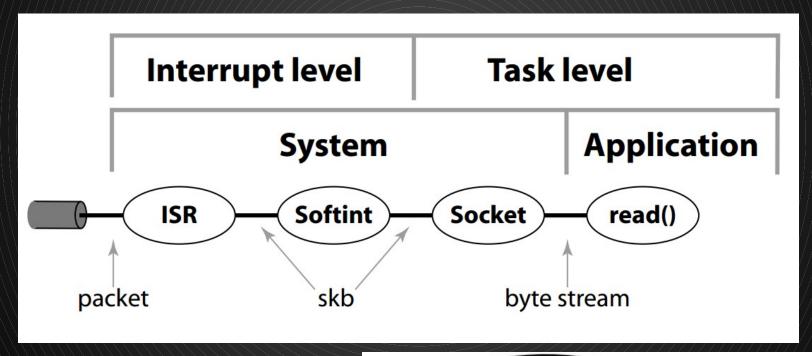
Zero copy, full aio, batching

**Scheduling** 

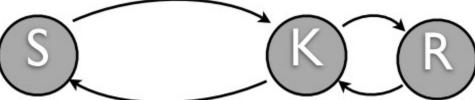
Lock free, low latency

**Tuning** 

Out of the box, auto


**CPU** 

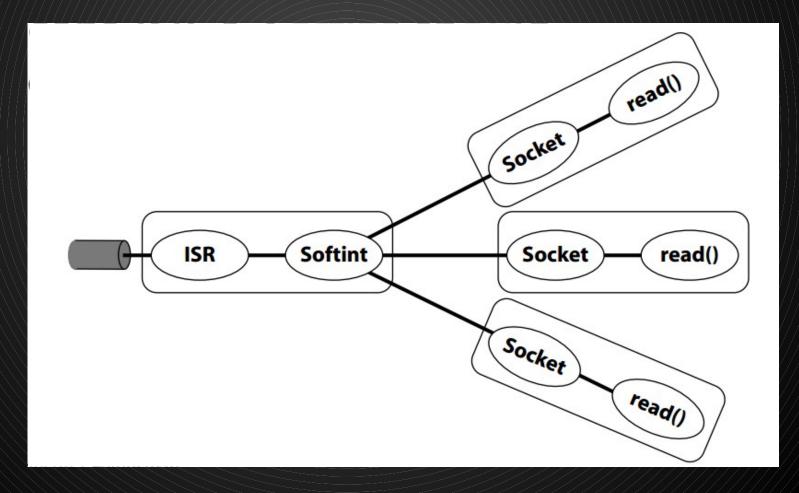
Low cost ctx, Direct signals,..





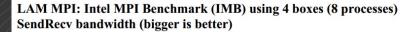

#### Common kernel network stack




Leads to servo-loop:



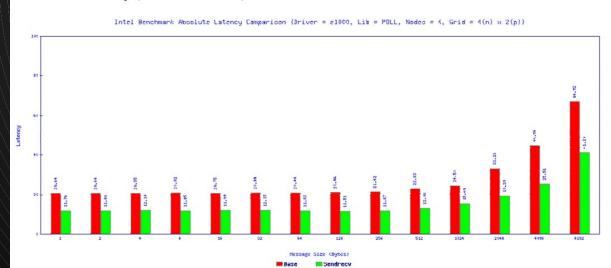


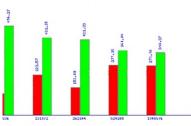

#### Van Jacobson == TCP/IP

#### Net Channel design:

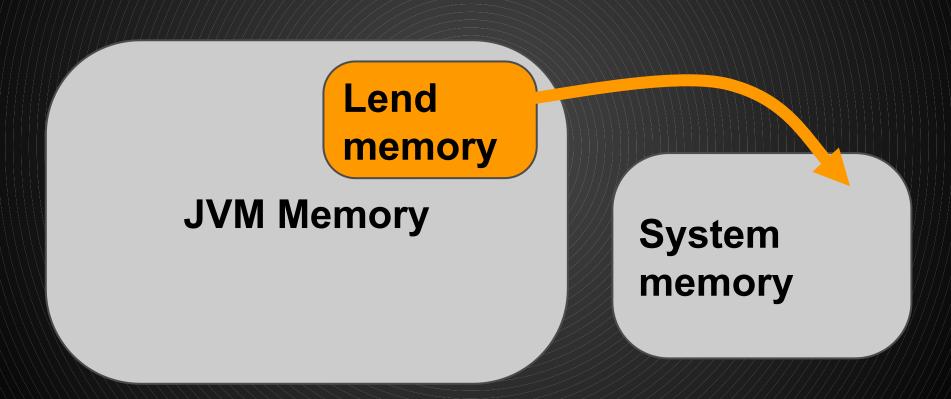







Intel Benchmark Absolute Bandwidth Comparison (Driver = e1000, Lib = FOLL, Nodes = 4, Grid = 4(n) × 2(p))




#### LAM MPI: Intel MPI Benchmark (IMB) using 4 boxes (8 processes) SendRecv Latency (smaller is better)





### Dynamic heap, sharing is good



#### **Milestones**

TCP/IP works; Performance: 50Mbps.., 4, 2013

UDP, 03/2013

TCP offload, > 15Gbps netperf, 7/2013

> RW ZFS, 8/2013

OSS launch, Memcached outperform by 40%, 9/2013

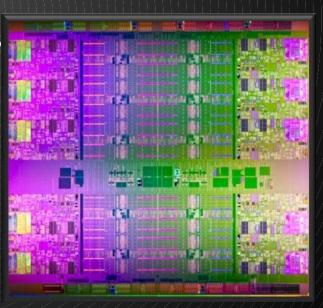
Git init osv, 12/2012 64 vcpu kvm support, 02/2013

Java hello world, 01/2013 Virtio blk over ram FS, 2/2013 ZFS mount, 6/2013

> 1Gbps netperf, 6/2013 Cassandra works; Cassandra outperforms Linux, 8/2013

#### **Status**

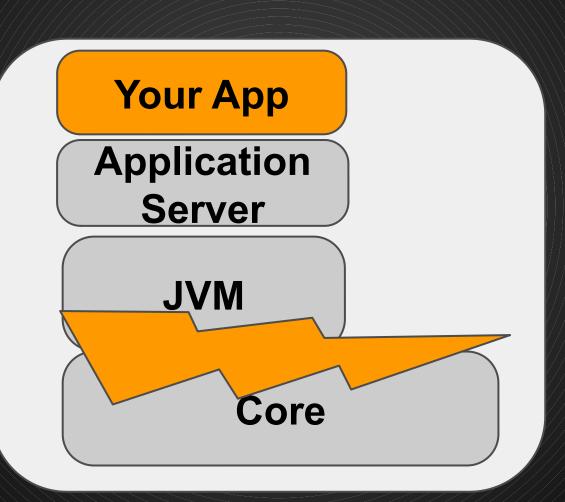
- Runs:
  - Java, C, JRuby, Scala, Groovy, Clojure, JavaScript
- Outperforms Linux:
  - SpecJVM, MemCacheD, Cassandra, TCP/IP
- 400% better w/ scheduler micro-benchmark
- < 1sec boot time</p>
- ZFS filesystem
- Huge pages from the very beginning


#### **Open Source**

- These days, credibility == open source
- Looking for cooperation:
  - Kernel-level developers
  - Management stack
  - Dev/ops workflow
- BSD-style license

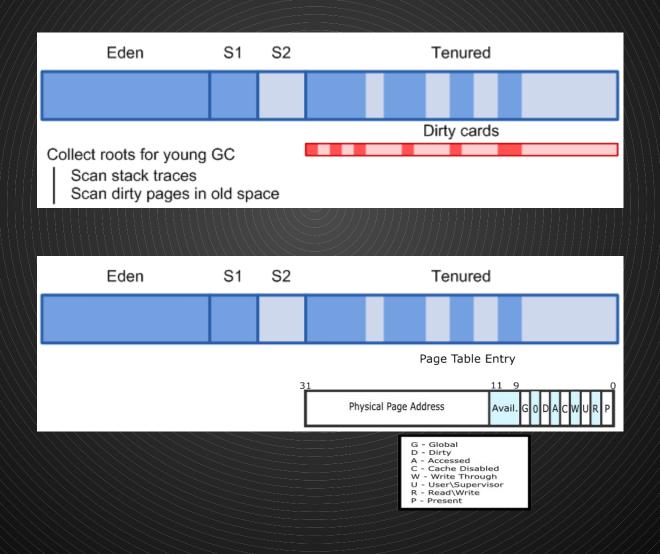


#### **Architecture ports**


- 64-bit x86
  - KVM running like a bat out of hell
  - Xen HVM running (still slow :-()
  - Xen PV in progress
  - VMware planned in 2 months
- 64-bit ARM planned
- Others patches welcome

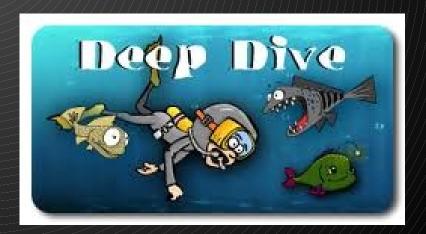


#### Integrating the JVM into the kernel


Dynamic Heap Memory

TCP in the JVM + App context




Fast inter thread wakeup

#### Integrating the JVM into the kernel



### **Technical deep dive**

- •/C++
- Idle time polling
- Performance and tracing
- Virtio-app



#### **C++**

```
int before(struct something *p)
    int r;
    r = -ENOENT;
    if (!p)
        goto out2;
    mutex lock(&p->lock);
    r = -EINVAL;
    if (!p->y)
        goto out1;
    mutex lock(&p->y->lock);
    r = ++p->y->n;
    mutex unlock(&p->y->lock);
out 1:
    mutex unlock(&p->lock);
out2:
    return r;
```

```
int after(something* p)
{
    if (!p)
        return -ENOENT;
    WITH_LOCK(p->lock) {
        if (!p->y)
            return -EINVAL;
        WITH_LOCK(p->y->lock)
            return ++p->y->n;
    }
}
```



#### Idle-time polling

- Going idle is much more expensive on virtual machines
- So are inter-processor interrupts IPIs
- Combine the two:
  - Before going idle, announce it via shared memory
  - Delay going idle
  - In the meanwhile, poll for wakeup requests from other processors
- Result: wakeups are faster, both for the processor waking, and for the wakee

#### Performance and tracing

```
TRACEPOINT(trace_mutex_lock, "%p", mutex *);
TRACEPOINT(trace_mutex_lock_wait, "%p", mutex *);
// ...
void mutex::lock()
    trace mutex lock(this);
[/]$ perf stat mutex lock mutex lock wait sched switch
  mutex lock mutex lock wait sched switch
          11
         885
                                        181
         154
                                        152
         154
                                        154
         404
                                        190
                                        157
         222
                                        152
         150
```

#### Virtio-app || Data plane

- For specialized applications, bypass the I/O stack completely
- Application consumes data from virtio rings

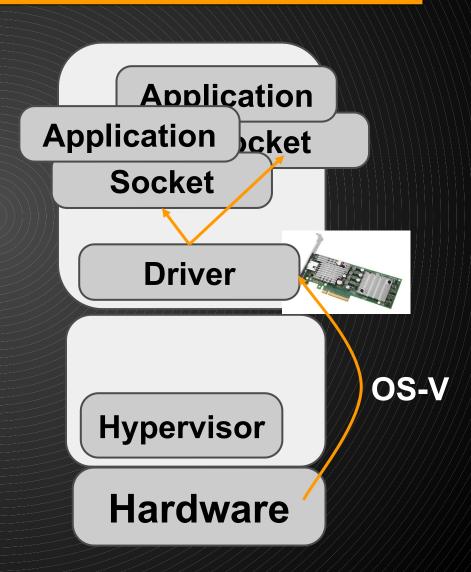




#### OS<sup>v</sup> at the cutting edge front

**Traditional** 

**Application** 


**Socket** 

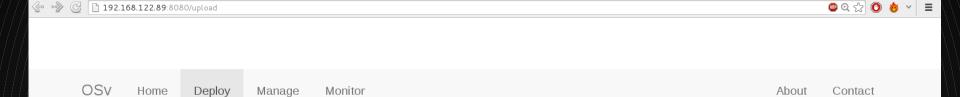
**Driver** 

**Host network** 

**Hypervisor** 

Hardware

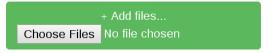



### OS<sup>v</sup> at the cutting edge front

- Transactional Memory (lock elision)
   Better architecture match with
   higher transaction/sec and less contention
- Perfect match with NVRam abundance
  In the near future we'll see NVRam reaches
  mainstream adoption. The importance of traditional
  filesystems will decrease, applications will manage their
  IO directly using NVRam

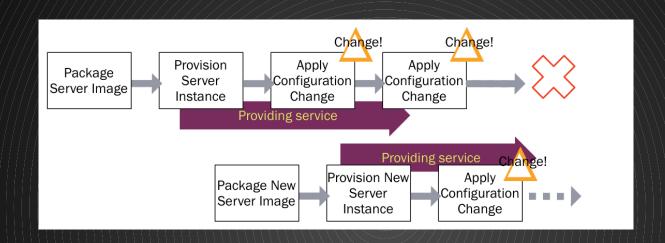
# OS that doesn't get in the way

NOTuning **NO State** NO Patching 4 VMs per sys admin ratio


## Management

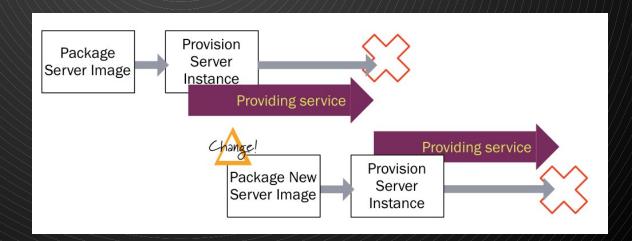


#### OSv application deployment


Deploy your Java applications into OSv by following these steps:

- Upload your application zip file (see example project).
- Activate the uploaded application by starting it.

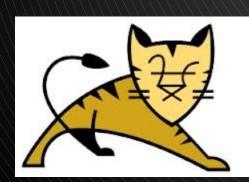





#### Virtualization 2.0: Stateless servers










#### Let's Build A COMMUNITY













## Porting a JVM application to OS<sup>v</sup>

1. Done\*

\* well, unless the application fork()s

#### Porting a C application to OS<sup>v</sup>

- 1. Must be a single-process application
- 2. May not fork() or exec()
- 3. Need to rebuild as a shared object (.so)
- 4. Other API limitations apply

#### Resources



http://osv.io



https://github.com/cloudius-systems/osv



@CloudiusSystems



osv-dev@googlegroups.com

# OSYCOLOUGIUS

#### Cloudius Systems, OS Comparison

Feature/Property

Good for:

Typical workload

kernel vs app

API, compatibility

# Config files

**Tuning** 

Upgrade/state

JVM support

Lines of code

License

OSV

Machete: Cloud/Virtualization

Single app \* VMs

Cooperation

JVM, POSIX

0

Auto

Stateless, just boots

Tailored GC/STW solution

Few

**BSD** 

**Traditional OS** 

Swiss knife: anything goes

Multiple apps/users, utilities, anything

distrust

Any, but versions/releases..

1000

Manual, requires certifications

Complex, needs snapshots, hope...

Yet another app

Gazillion

GPL / proprietary